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COMMCN PROBLEMS IN THE ELICITATION AND ANALYSIS OF EXPERT OPINION
AFFECTING PROBABILISTIC SAFETY ASSESSMENTS

I
Los Alamos National Laboratory,

ABSTRACT

Expert opinion 1is frequently
used 1in probabilistic safety
assessment (PSA), particularly in
estimating low probability events.
In this paper, we discuss some of
the common problems encountered in
eliciting and analvzing expert
cpinion data and offer solutions or
recommendations. The problems are:
(1) that experts are not naturally
Bavesian, People fail to update
their existing information to
account for new information as it
becomes available, as would be
predicted by the Bayesian
philocophy.

(2) that experts cannot be fully
calibrated. To calibrate experts,
the feedback from the known
quantities must be immediate,
frequent, and spacific to the task.
{3) that experts are limited in the
number of things that they can
mentally juggle at a time to 7 % 2.
(q) that data gatherers and
analysts c¢an introduce bias by
unintentionally causing an altering
of the expert's thinking or
answers,

(5) that the level of detail in the
data, or granularity, can affect
the analyses.

(6) that the conditioning effect
poses difficulties in gathering and
analyzing of the expert data. The
data that the expert gives cen be
conditioned on a variety of factors
that can aff:ct the analysis and
the interpretation of the results,

INTRODUCTTION

What Is !xpert Opinion?

Expert opinion 4is infecrmation
glven by an expert in r=28sponge to a
technical problemn. This
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information is often the only
available or supporting data for
rare Oor never observed events. For
this reason, we will refer to the
information provided by experts as
data.

Ar expert is a person who has
background in the subject area and
is recognized by his or her peers
or those conducting the study as
qualified to answer questions,

Expert opinion can vary in form
from being an answer (e.g.,an
estimate of tlie probability of an
occurrence of a nuclear reactor
accident of a particular type) to a
description of the expert's thought
processes in arriving at an answer.

Expert opinion has also been
called expert judgment, subjective
judgment, expert forecast, best
estimate, educated guess, and most
recently, expert knowledge.
Whatever 1t 1is called, expert
opinion is more than a guess. It
is an informed judgment based on
the expert's training and
experience, and it is useful data
for analysis and interpretation
purposes.

When Expert Opinion is Used

Expert opinion data has been
widely used, especially in
techinical fields. This type of
data provides information when
other data sources, such as
measurements, experimentation,
observations, or simulation are
unavailable. Furthermore, it can
be employed to supplement existing
data when these are sparse,
questionable, or only inuirectly
applicable. For example, in a new
reactor-risk study called NUREG-
1150 (U.S. NRC, 1989), expert
opinion was used where
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"experimental or observational data
or validated computer models were
not available or not widely agreed
upon" (Ortiz, Wheeler, Meyer &
Keeney, 1988, p. 4).

Expert opinion has been
specifically gathered to meet the
following needs:

* To provide estimates on new,
rare, complex, or otherwise
pocrly wunderstood phenomena.
Such phenomena have also been
described as being fuzzy or of
high uncertainty. One example
would be estimating the
likelihood of rare reactor
accidents. Another would be
estimating the safety of designs
for the new production reactor.

* To forecast future events. In
general, when applicable data are
unavailable, predicting future
events cr actions requires use of
expert opinion. To make these
predictions, the experts must
adjust, sometimes radically, from
the status quo or past patterns.
For instance, the demand for
various utilities in the United
States, such as electricity, may
come from experts' projections
(Ascher, 1978).

* To 1integrate or interpret
existing data. Expert opinion is
frequently needed to organize
qualitative information  or
mixtures of qualitative and
gquantitative data into a
framework for making decisions.

Qualitative data are any
nonnumeric data, such as the
expert's reasons for giving an
answer (e.g. his assumpticns,
definitions, and problem-solving
processes), the expert's answer
encoded in descriptive categories
nr preference scales (e.g., poor,
moderate, and good), or
additional information regarding
existing data (e.g., theory T
suggests that system A 1s more
reliable than system B).

Quantitative data are numeric
data such as estimates of
prchbabilities, physical
phenomenon (e.g., temperature),
siinple ranks or ratings (e.q., 1-
5), and error bounds on any such

estimates of probability,
physical phenomenon, or ranks or
ratings (e.g., 0.75 £ 0.25).

* To learn an expert's problem-
solving process or a groud's
decision-making processes. The
experts often do not know how
they solve a problem or reach a
decision because their thoughts
have become so automatic that the
orocess is difficult to recall.
However, their problem-solving
techniques are needed to support
their answers, to improve current
practices, to train others, or to
create systems that provide
expert advice.

* To determine what 1is currently
known, what is not known, and
what is worth learning in a field
of knowledge (Ortiz et al.,
1988) . In the reactor risk
study, NUREG-1150, the experts
exchanged the most up-to-date
information in preparation for
giving their answers to
particular questions. As a
result, they identified gaps in
their field's state of knowledge
and determined 1in which areas
they would most 1like to see
research. This type of
information offers twe benefits:
it can serve as a complement to
the current state of knowledge or
as motivatlon for further study.

Expert opinion is often used to
address more than one of the above-
mentioned needs. Such wa3s the casge
in the =-eactor risk project, NUREG-
1150 (Wheeler, Hora, Cramond &
Unwin, 1.489), where the expert
opinion met all of the above-
mentioned purposes.

In addition, gathering expert
opinion often provides side
benefits: one of the most common
benefits is the facilitation »f
communication. The experts readily
see how their opiniors diffec and
relate to each other's views in an
environment of openness and
objectivity. We have noticed that
the synerglism of {nterexpert
discussion stimulates resuits that
would not have been achieved
otherwlise.



General Attributes of Expert
Judgment

In general, expert opinion can
be viewed as a representation, a
snapshot, of the expert's knowledge
at the time of response to the
technical question (Keeney & von
Winterfeldt, 1989). As Ascher
(1978, p. 203) notes, "multiple-
expert-opinion forecasts, which
require very little time or money,
do very well in terms of accuracy
because they reflect the most-up-
to-date consensus on core
assumptions." The expert's opinion
legitimately can and should change
as the expert receives new
information. 1In addition, because
the cpinion reflects the expert's
knowledge and learning, the experts
cen  validly differ in their
opinions,

An expert frequently gives
answers in quantitative form, such
as probabilitiles, ratings, or odds.
For instance, an expert's answer to
the question could be respectively
0.10, 1 on a scale of 10, or 1 in
10 chances. Quantitative response
modes are often requested because
the numeric data are more eas.ily
analyzed than g-alitative data.

Much of expert opinion is the
product of high-level thought
processing, also called knowledge-
based cognition. By cognition is
meant the mental activity that
occurs when a person processes
information, such as for solving a
problem. Knowledge-kased cognition
is the high-level interpretive or
analytic thinking that we do when
confronted with new and uncertain
decision situations (Dougherty,
Fragola & Collins, 1986, p. 4-2)
Thus, knowledge-based cognition is
often invoked by the situations for
which expert opinion is sought.

The quality of expert opinion
varies according to how the data
are gathered: the data can be
obtalned in a variety of ways,
ranging from the unconsciou3 to the
deliberate. Expert oplnion i3
often gdathered unconsciously such
43 in technical projects. Analysts
typically make decisions in

defining problems, establishing
boundary conditions, and screening
data without being aware that they
have used their own expert opinion.
For example, analysts or experts
select particular reactor
environments or operating
conditions, thereby eliminating
conditions judged exotic or
unimportant.

Expert opinion is also gathered
deliberately, although even this
type of gathering varies along a
continuum of informal to formal.
On the informal end of the
continuum, experts are asked to
provide opinions off the toup of
their heads. The informal means of
gathering expert opinion has been a
gsource of current controversies
involving the accuracy of expert
opinion.

The most recent controversy
involves psychologists and
psychiatrists serving as expert
witnesses in legal proceedings.
Recent vrticles have proclaimed
that these expert witnesses are no
mcore accurate than lay persons,
particularly in predicting an
individual's piopensity for future
violence. These situations
illustrate that "without the
safeguards of the sciertific
method, <cliniclians are highly
vulnerable to the problematic
npinion practices and cognitive
limitations common to human beings"
(Faust & 2iskin, 1988, p. 33). In
other words, experts are subject to
the same cognitive and motivational
biases of other humans if certain
preventative measures are not used
in the elicitation.

By bias i3 meant a skewing of
the expert's opinion from some
reference point. With cognitive
biases, the expert opinion 1is
considered skewed from the
standpoint of mathematical or
logical rules, usually because of
the ways in whicn the expert
mentally processes information,
With motivactional biases, the
expert opinion i{s skewed from the
standpoint of the expert's
thoughts. The expressions of the
expert's thinking do not match



either the expert's thoughts or
answers at the time of the
elicitatior because the expert has
altered the reports of his or her
thoughts or because the interviewer
has misunderstood the expert's
reports.

Formal means of gathering expert
opinion usually involve selecting
experts according to particular
criteria, designing elicitation
methods, and specifying the mode in
which the expert i1s tc¢ respond.
The formal approach to elicitation
has two advantages over its
unconsciously or informally
gathered counterparts.

First, with the formal approach
more time and care is taken in
eliciting the opinions. Because
the quality of expert opinion is
often evaluated in terms of thc
methods used to gather the
opinions, the greater time and
effort associated with the formal
approach is an advantage.

Second, the formal approach
lends itself more readily to
documentation than those methods
used unconsciously or less
formally. That is, records are
usually kept of the elicitation
methods us 'd and of how the experts
arrived 4t their final opinions.
Such a record allows the formal
method and its results to be
scrutinized and the results updated
to reflect new information. Thus,
the formal approach is more likely
to advance through the review
process (Ortiz et al., 1988).

COMMON PROBLEMS IN ELICITATION AND
ANALYSIS

In this section, we address a
few misconceptions concerning
expert opinion and aspects of
elicitation and analysis that have
typlically caused problems. We hope
that this information will alert
readers and prevent their falling
into the difficulties described.

Experts Are Not Naturally Bayesian

Many analysts and theorists in
the decision, reliability and
safety analysis community advorate

the Bayesian analysis apprcach. In
these communities, this approach
has led to a philosophy regarding
the evaluation of gathered data as
they are conditioned on other
events or circumstances (e.g.,
other variables). Civen that the
data are conditioned on other
variables, the Bayesian philosophy
implles that as these conditions
change, the data change. 1In other
words, data are updated with
changing conditions. However, a
major problem occurs when applying
a Bayesian approach to expert
opinion because experts are not
naturally Bayesian (Kahneman &
Tversky, 1982). Human cognitive
processes do not seem to follow
Bayesian philosophy.

Humans are not Bayesian for a
variety of reasons demonstrated in
both laboratory settings and actual
applications. The studies of
Kahneman and Tversky (1982) have
shown that that experts fall to
change or adjust their estimates in
view of new information.
Mathematically, the failure to
update estimactes means that
P(AIB)=P(AIC); that s, the
probability of A 1s not altered
when the conditions governing A are
changed from B to C. This equetion
would only be true 1if P(A) was
independent of any conditioning:
that is, P(A|C)=P(A) and
P(A|LC)=P (A) . However, in
estimating probabilities it 1is
unlikely that any event would be
totally independent of all
conditions.

Other characteristics of human
cognition prevent experts from
being Bayesian, Some of these
characteristics include the
inability of humans to grasp (1)
the effects of sample size, (2) the
frequencies of truly rare events,
(3) the meaning of randomness, (4)
and the effects of variability
(Hogarth, 1975).

We offer examples of each of
these chararterlistics below.

(1) Humans wil) estimate the same
event fallvre frequency whether
they observed one failure in 100
times or one failure in 1000 times.



This shows a failing to account for
changing sample size.

(2) Humans will estimate the
frequency of a rare event to be
higher if they have personally
experienced that event.

(3) Humans consider a set of values
with any sort of pattern,
repetition, or clustering to be
nonrandom. This natural tendency
results in truly random processes
being considered nonrandom.

(4) Humans underestimate the
variance of a distribution of
values, If an expert is asked to
estimate the variance or standard
deviation of the temperatures
necessary for a component ¢to
overheat, that expert will provide
a variation that can be anywhere
from one-half to one-fourth of the
actual variability.

These same inabilities also
contribute to human difficulties in
estimating probabilities in general
(Kahneman & Tversky, 1982). Human
cognition does not follow the
axioms (rules) of probability, such
as all probabilities lie in the
[0,1) interval and the sum of
mutually exclusive and exhaustive
event probabilities must be 1. The
probabilities elicited from a human
do not represent a true,
mathematical, probability measure.

To counter these many human
tendencies, careful attention 1is
needed in selecting the appropriate
method for gathering the expert's
answers. In particular, the mode
in which the expert is asked to
respond shculd be one that the
expert understands and one that
avolds asking for quantities that
humans do not accurately estimate
(e.g., the variance). Frequently,
experts will need to be trained in
the use of the chosen response
mode. For example, if the question
asks the experts to estimate
probabilities of an event, the
expert must be trained in the
meaning of the term probabhility.

Hogarth (1980, p. 149) offers 8
keys to aid the expert in the use
of probability thinking and
probability distributions.

(1) Think in terms of two different
sources of variation around the
mean value. The first source is a
natural or background noise level
variation; the second source 1s
variation from a lack of
reliability or from measurement
errors.

(2) Remember that the variability
in the raw data is smaller than the
variance of the mean of that data.
Variances of the mean are affected
by both the number of observations
in the data set and by the
variation in the data set. The
larger the number of observations,
the smaller will be the variance of
the mean.

(3) Ask "what is the base-rate?"
(e.g., what 13 the standard of
comparison).

(4) Ask "what is the validity of of
the information source?"™ and "how
does it related to the predictive
target?"

(5) Question the reliability of the
information source. Imperfect
reliability implies less predictive
ability. Avoid extreme predictions
based on poor or extreme data
gources.

(6) Distinguish between information
sources that overlap (i.e.,
dependent) and sources than differ
(1.e, independent).

(7) Ask to what extent your data
could be explained by a random
process.

(8) Ask if it is possible to test
your predictions.

While these keys help in
probability predicting, they rely
on the experts' knowledge c¢f the
concepts of variation, sample slize,
Bayesian updating and randomness.
As we have already noted, experts
must be craired and monitored to
counter blases resulting from
misuse and misunderstanding of
these concepts.

Experts Cannot Be Fully Calibrated

The concept of calibratijion i3
basic to the scientific method. We
define calibration to mean the
comparison of an unknown
(lnstrument or pro-ess) with a
detined standard o- a correct



procedure to adijust the unknown
until it matches the standard.
Until recently, calibration applied
to measuring devices or processes
for which standards or known
quantities were available. The
concept of calibrating experts was
attractive because people are known
to drift from particular standards
(e.g., to be prone to motivational
biases, to fail to adequately
update their estimates in light of
new information, tc fail to account
for the effects of sample size and
variability, and tc fail to follow
the axioms of probability theory).

However, the conclusions from
experimental studies indicate that
experts cunnot yet be fully
calibrated. Studies by many such
as Lichtenstein, Fischhoff, and
Phillips (1982) show that feedback
on the outcome of events can reduce
but not eliminate the biases that
hamper calibration. For feedback
to be effective as a calibration
tool, it must be immediate,
frequent, and specific to the task
(e.qg., the data received by
meteorologists in weather
forecasting). Such feedback cannot
often be given in the case of risk,
reliability, and safety assessments
because the outcomes 1lie in the
future and are unknown.

While this gituation of
uncalibrated experts and unknown
outcomes may seem problematic, many
users of expert opinion (e.g.,
decision makers) do not worry about
biases arising from their experts.
Instead, they have faith in experts
because they perceive them as being
very knowledgeable (Morris, 1986).
This faith in the expert‘'s opinion
is not to imply that researchers
ignore the calibration problem. On
the contrary, calibration 1issues
have led many decision analysts to
focus on problems that arise from
expert-decision maker interactions.
In many applications, calibration
of the expert cannot be defined
independently cf the decision maker
{French, 1986) because the decision
maker factors the expert's thinking
into his or her own when reaching a
final decision.

Decision makers also affect
calibration through the evaluation
of their own as well as the
expert's calibration., For example,
decision makers who see themselves
as miscalibrated <can induce
additional biases by over-
compensating for their perceived
lack of calibration. Furthermore,
they may not perceive independence
when it actually exists (Harrison,
1977). Thus, awareness of
miscalibration and overcompensation
for it, just as ignorance of it,
car. acerbate calibration problems.

Mathematical model techniques
such as those from Winkler (19€8)
combine the decision maker's
information with that of his
experts. Some of these models
incorporate calibration terms to
adjust for miscalibration.
However, using these models
requires estimating or determining
the model terms (e.qg., the
miscalibration, the correlation
among the experts and the decision
maker) . Therefore, the use of
these models is limited.

An alternative solution to
complex mathematical models is to
handle miscalibration with the use
of broad uncertainty measures and
characrterizations (Meyer & Booker,
chapter 17, 1989). The uncectainty
measures provide an envelope around
the experts' estimates that
attempts to capture the true
estimate by accounting for the bilas
induced by the lack of calibration.

Another more basic approach 1is
to use elicitation methods that
will minimize the biases that
contribute to miscalibration. For
example, interviewers can select
elicitation methods and phrasings
of the questions that reduce the
potential for motivational bias by
avoiding leading the expert. In
addition, the data gatherers can
nonitor the elicitation for signs
of the occurrence of various
biases, as described in Meyer,
Booker, and Bradshaw (1990).



Experts Arxe Limited in the Number
¢f Things That They Can Mentally
Juggle

There are limits to the amount
of information that we can process
in solving problems. A classic
paper by Miller (1956) identifies
the number of things that people
can accurately discriminate. In
these studies, the subjects
differentiated things on the basis
of one attribute, such as the
volume of & sound. For example,
when subjects listened to a sound
played at varying 1levels of
loudness, they could accurately
discern about 7 levels. Other
experiments included
differentiating the size of drawn
squares, determining the saltiness
of various solutions, and
distinguishing between musical
notes. From many such experiments,
Miller determined a limit of 7 as
our processing capacity because the
number of errors increases greatly
after that point.

The number 7 does not represent
a strict 1limit Dbecause, under
particular conditions, we exceed
it. We can go beyond the 1limit
when we consider multidimensional
data, when we perform relative
rather than absolute comparisons,
and when we make several absolute
opinions in a row,

Multidimensional data is the
input that we simultaneously
receive from our five senses,
assess, and act on as functioning
human beings. As in their daily
opiniors, the subjects also
exceeded the 1limit of 7 1in
experiments usgsing multidimensional
attributes. For example, in an
experiment that produced
combinations of s93ix acoustical
variables, subjects readily
discerned wilhout error about 150
different categories. While we are
able to judge more things using
multidimensional attributes, this
capacity also has its limits. 1In
particular, when the total capacity
of our information processing is
increased, our accuracy on any
parcicular item is decreased. In

other words, when making
multidimensional ominions, "we can
make relatively crude opinions of
several things simultaneously"
(Millevr, 1956, p. 88).

We can also exceed the limit of
7 when we perform relative
comparisons. Relative :comparisons
allow individuals tec judge things
with respect to one another and are
frequently done on two things at a
time . For example, A could be
compared to B, B to C, C to A, and
SO on.

When an individual consecutively
makes several absolute opinions,
the information is stored in short-
term memory. Memory has its
limits, such as in the number of
things that can be retained for
short-term consideration. Memory
limits can be expanded because
humans have the capability of
grouping or 9organizing more
information per thing. This
capability is called chunking. For
example, a person learning
radiotelegraphic code first hears
each dot and dash as separate
chunks. Later, this person can
organize letters, words, and even
phrases into chunks. Expects have
been found to be much more
proficient at chun’ g data than
novices. For exa, 2le, skilled
electrical technicians, in contrast
to novices, can briefly view a
circuit diagram and immediately
reconstruct most of it from memory
{Egan & Schwartz, 1979),

The information mentioned in
this section has several
implications for expert opinion.
At the very least, it suggests that
the interviewer avoid creating an
elicitation situation in which the
experts have to mentally juggle
more than 7 items at a time. This
suggestion applies also to response
modes. When rating scales are
used, the interviewer may wish to
limit their gradations to 7 or less
because more gradations impair an
expert's ability to make fine
discriminations.

If the project demands that a
1lgh number of distinctions be made
simultaneously, the data gatherers



should take into account that the
experts will judge these
distinctions more crudely than if
they had considered them separately
or in pairs. In such situations,
the interviewe . may consider having
the experts compare two items at a
time. There are techniques such as
Saaty's analytical  hierarchy
process (Saaty, 1980} designed for
making pairwise comparisons.

Data Gatherers and Analysts Can
Introduce Bias

The data gatherers and analysts
can unintentionally introduce bias
into expert opinion. Bias in this
case refers to motivational bias:
an altering of the expert's
responses because of the influence
of the data gatherer (interviewer
or knowledge engineer) or analyst.
Specifically, the data gatherers
and analysts can cause bias through
misinterpretation or
misrepresentation ot the expert
data.

Data gatherers can misinterpret
the expert data when they listen
and record an expert's thoughts;
factors like personal knowledge,
training, and experience influence
their understanding of the expert's
words. For example, when an
engineer, economist, and decision
analyst met initially with wrilitary
experts on a manufacturing nmatter,
they each interpreted the
information in terms of their own
training. The engineer perceived
the problem as an engilneering one,
the economist a cost/benefit. one,
and the decision analyst a
multiattribute decision-theory one.
They each questioned the experts to
obtain the additional information
that they needed to apply their
individual orientation in greater
depth. They each believed that
they had received information that
confirmed the applicabiiity of
their own training to treating the
matter. For this reason, we also
refer to this source of bilas as
training blas.

Data misrepresentation occurs
during the later stages of an

expert opinion project;
specifically, misrepresentation can
occur when the data is represented,
modeled, or analyzed. When
performing analyses, analysts tend
to force the data into models or
methods with which they are most
comfortable or familiar. For this
reason, misrepresentation is also
referred to as tool bias.

A parallel example would be to
use a hammer not only to drive
nails into wood but screws and
bolts as well. 1In all cases, the
tool would perform its function, in
some instances better than others.
If the hammer continued to perform
its function through time, the user
would probably never realize the
tool's shortcomings nor would he or
she seek an alternative. The same
can be said for models. For
example, analysts may wish to use a
model that requires an independence
assumption or assumes a particular
distribution for the data (e.qg., a
normal distribution). To use the
model, they will probably assume
that the data meet these
requirements (or hope that the
modelling technique is robust to
the violation of assumptions).
Analysts may not question the
validity of these assuvmptions
becarse of some of the social and
psychological mechanisms discussed
below,

Notice that training and tool
bias are related. The connection
exists because each of us in our
fields have inherent values that
predispose us toward particular
approaches and methods. For
example, knowledge acquisition, a
subfield of artificlal intelligence
(Henrion & Cooley, 1987) and
cultural anthropology have valued
the expert's knowledge and viewed
!t as the gold standard to be
extracted and emulated. By
contrast, the fields of decision
analysis, statistics, and
operations researzh have viewed
particular mathematical and
statistical rules as the standard
(Henrion & Cooley, 1987). Expert
data is valued if it exh'bits thesge
standards, such as the axioms of



probability and Bayesian
philosophy. The methods that these
two orientations use reflect their
values. Knowledge acquisition and
cultural anthropology favor methods
designed to obt:in and represent
the expert's natural way of
thinking. The approaches of
decision analysis and statistics
correct for what they consider to
be limitations in human information
processing.

Why are humans prone to such
subtle but pervasive biases? Why
do we selectively take in data that
support what we already know and
believe that it can be handled by
the approaches, models, or methods
we prefer? First, it should be
noted that all human perception is
selective and learned. Our
perceptions of reality, of what is,
are conditioned at a cultural,
societal, and individual level.

At the cultural level, meaning
and structure are imposed and then
taken for reality by members of
that culture. For example, members
of a Western scientific culture
would take the (visible) color
spectrum, such as in a rainbow, and
divide it into four to six colors—
violet, blue, green, yellow,
orange, and red. In another
culture, the people would not see
the segmentation that we do.
Instead, they might have been
corditioned to view the gspectrum as
consisting of wet and dry colors.
The members of both of these
cultures have been conditioned to
see color in a particular way aad
to belleve that 1t objectively
exists as they perceive it.

At the societal 1level, our
training leads us to define and
structure problems in particular
ways, to use cur field's methods,
and to value special types of data.
However, we forget that these are
learned values and tend to proceed
as If they were simply truths that
were revealed through our learning
experiences. For example, many
hard scientists believe that the
only true data are the quantitative
measurements gathered by

instruments
experiments.

At the individual 1level, our
desire to handle the problem leads
us to use those tools that we krnow
best and then to believe that they
worked. A certain psycholioy.cal
mechanism prevents us from
realizing when our Lleliefs and
perceptions do not match, such as
when the use of a favored method
pro-es inappropriate. The
psychological theory of cognitive
dissonance (Festinger, 1957)
predicts that when we have either
two beliefs or a belief and a
perception 1In conflict, the
conflict will be resolved
unconsciously. Many tests have
shown that people selectively pay
attention to information that
confirms their beliefs and discount
that which could cause conflict
(Baron & Byrne, 1981). This
tendency inhibits people‘'s ability
to update old information in light
of new (i.e., Bayesian updating).

Scientists are not immune to
this tendency (Armstrong, 1981;
Mahoney, 1976). For exanmple,
scientists tend to notice the data
that confirms their hypotheses and
either miss or discount the
negative evidence (e.g., the data
must be nolsy, the equipment
probably malfunctioned, or there
could have been operator
interference).

How can we best prevent our own
tendency to introduce bias? First,
we can strive to remain aware of
this tendency. Second, we can
select elicitation methods that
minimize the role of, and hence the
opportunity for interpretation of,
the 1interviewer or knowledge
engineer. These methods, used for
obtaining data on the expert's
answer or problem-solving
processes, place the emphasis on
the expert. By focusing on
learning the expert's thoughts and
words and using these to pursue
questioning, the data gatherer 1is
less likely to have his or her
views intrude (Meyer, Mniszewski &
Peaslee, 1989). In addition, the
data gatherers can try to act like

during physical



a blank slate to avoid translating
the expert's data into their own
concepts.

Third, the analyst can select
analysis methods (e.g., simulation,
data-based methods, and non-
parametric statistical methods)
that require the making of minimal
assumptions on the data and avoid
fitting the cdata to restrictive
models. We also advocate the use
cf multiple analysis techniques to
cross-validate conclusions and
results.

Finally, we suggest that the
analyst exercise care in the type
of inference (conclusions) that are
drawn from this data. Because
experts do not provide a random
sample of estimates from an
underlying population of estimates,
statistical inference about that
population is not possible. In
other words, the experts' estimates
cannot be used to make conclusions
about the entire true population of
values. The inference possible
from the expert data is only a
ceneral inference concerning the
state of knowledge existing at that
time by tnese particular experts.

The Level of Detail in the Data
(Gxanularity) Can Affect the
Analyses

The term granularity has its
origins in fields such as numerical
analysis and artificial
intelligence. In numerical
analysis, granularity refers to the
computatioral grid size used for
defining the level at which the
computations are made. In
artificial intelligence,
granularity is defined as "the
level of detail in a chunk of
information" (Waterman, 1986).

Granularity ranges from coarse
(e.qg., outlining the basic
functions of a nuclear power plant)
to fine (e.g., determining the
functions of a particular nuclear
power plant component) .
Granularity is the level of detail
at which the data 1is gathered,
processed, and interpreted.
Therefore, this level establishes

the framework of operation for the
problem,

The granularity is an inherent
part of the experimental design of
a study. In most applications,
this level 1is dictated by some
limiting aspect of the problem,
such as the goals of the study or
the complexity of the questions
asked. Thus, in most problems, the
selection of the level is done
implicitly and not as a separate,
conscious decision. For example,
in the testing of a new component,
the goal of the problem defines the
granularity at the component level.
If the goal is to determine the
component 's performance in a system
which 1s not critical to reactor
operations, it would not Dbe
necessary tc gather information on
the component's Dbehavior irn
multiple environments and
conditions. However, 1if the
component is in a critical system,
thie information and more might be
required. The latter goal is at a
more specific level, and questions
necessary to obtaining the required
information must be correspondingly
more detailed. Generally,
providing data to answer the
question why requires that a finer
granularity of data be gathered.

The level of detail also depends
upon the complexity of the problem.
On simpler questions, such as those
whose answers can be verified
(e.g., almanac questions), the
subject tends to use more
structured and detailed problem-
solving techniques. Thus, the data
from simpler questions are easier
for the interviewer to record and
for the analyst to model in full
detail. On complex problems, the
subject's problem-solving
information tends to be more
plentiful but less structurecd or
clear. The subject and the
interviewer may encounter the
limitations of information
processing mentioned in the
previous section, Experts are
Limited in the Number of Things
that They Can Mentally Juggle. The
subject resorts to using heuristics
to simplify the problem solving.



The subject struggles to report
these complex processes, usuzally
simplifying them or 1leaving out
parts in the translation. In
attempting to follow the subject's
account, the interviewer is likely
to further screen and abstract the
information. As a consequence,
even though there 1is a fine
granularity of data associated with
solving complex questions, this
level of detail is not as easy to
extract or document as it is on
simpler problems.

Granularity gre: .ly affeccs the
data gathering and aggregation
processes. In complex problems,
there are rany different variables
to cons.der and different data
sources to combine. For example,
one component in a system is well
tested and there is a large amount
of information available on its
performance. However, all the
other components in the system are
rare with 1little known about
performance. Therefore, the entire
system is a mixture of
granularities. To be consistent in
the data gathering for this system,
the system granularity must be
determined by the coarsest level of
available information (i.e, the
level of the rdrest component).

The leve of detail greatly
affects the analyses, particularly
the formation of models, their
interpretation, and the drawing of
conclusions. For example,
different models can be formed from
the gathered data, dependlng on the
chosen level of granularity.
Typically, the analyst constructs a
model] whose level of detail depends
on the data content of the subject
who has provided the least amount
of or the most general information,

Granularity is also an issue in
the interpretation of the data.
Analysts see data from thelr own
perspective, which is not
necessarily the same perspective as
that of the subject from whom it
was gathered. When the analyst
screens, transforms, and construct i
problem-solving models, the
granularity becomes a function of
the analyst's thinking. The

analyst is led, often
unconscaously, to force the data
into the desired level for fitting
a preconceived model or hypothesis
(tool bias). Thus, the analyst's
preconceptions can affect the way
in which the data is represented.
This pitfall is especially likely
to occur when the data are highly
qualitative, with high
uncertainties, as is often the case
with expert opinion.

Two studies of interexpert
correlation show how granularity
atfects conclusions (Booker &
Meyer, 1988:; Meyer & Booker, 1987).
In the first study (Booker &
Meyer, 1988), which dealt with the
problem~-solving techniques of
statisticians, the experts were
asked simply constructed questions.
Because their data contained
specific problem-solving features,
the analyst was able to compare the
statisticians using general linear
models. The result from this
comparison was that experts who
used similar rules of thumb and
assumptions reached similar
solutions., Therefore, correlation
among the experts appeared to exist
at the detailed level of their
problem-solving models.

In the second study (Meyer &
Booker, 1987), nuclear engineers
were agsked questions with a more
complex structure, The specific
heuristics and assumptions that the
nuclear engineers used were so
varied that the design ma:trix for
use in general linear models was
prohibitively sparse. Thus, the
problem-solving mcdels had to be
constructed at a more genaral level
by combining specific problem-
solving features. When these more
general model)s were const.ucted,
which mirrored the ways that the
experts processed the information,
the answers were found again to
correlate with the expert's
problem-solving techniques. If
conclusions for the s8econd study
had been drawn at the detalled
level of the first study, no
evidence for any interexpert
correlation would have been found.
Therefore, even though both studies



concluded that experts' answers
were correlated according to their
problem-solving processes, the
models for these problem-solving
process had different
granularities. The effect of
granularity on correlation results
ocurred because finding correlation
depends on having the right data-
to-noise ratio, something that the
level of granularity determines.
(Glen Shafer, originator of the
Dempster-Shafer theory of belief
functions and currently at the
University of Kansas, called this
relationship to our attention.) 1In
sum, conclusions can differ
depending on the granularity 5f the
mcdels chosen.

Because granularity can change
at all stages (from question
design, to data gathering, to
analysis, to interpretation), we
recommend that it be carefully
monitored throughout these stages.
It may not be possible to choose a
granularity before the study and
keep that level throughout. The
expert can change the level and so
can the analyst. When
granularities change, the most
general level should dominate for
the remaining stages. The results
should always be stated in terms of
the granularity used.

The Conditioning Rffect Poses
Difficulties in Gathering and
Analyzing Expexrt Data

The data that the expert gives
can be conditioned on a wide
variety of factors which include
the wording of the problem, the
elicitation setting and reference
materials made available, the
expert's internal state at the time
of questioning, the expert's method
of solving the problem, the
interviewer's c¢r other's responses
to the expert's data, and the
expert's skill at articulating his
or her thoughts, We believe that
expert data are highly conditioned
on these other factors and this
complicates the study of expert
data.

The ccnditioning effect creates
problems in both the elicitation
and analysis of expert opinion. 1In
the elicitation, the researcher may
not have control over the intrusion
of factors that influence expert
opinion. For example, in an
elicitation session, the
interviewer has little control over
the state of mind that the expert
brings to the session, particularly
if that state has been affected by
some event in the expert's private
life. The conditionirg effect also
complicates the aunalysis; the
factors often overlap and cannot be
separated for analysis of their
effects on the expert data (Meyer &
Booker, 1987).

The conditioning effect relates
to the problem of bilas in expert
data, Some conditioning effects
could be labeled as sources of
bias. That 1s, they lead to an
altering of the expert's responses
or to opinions that do not obey
mathematical and logical standards.
For example, the 1interviewer's
negative response to some aspect of
the expert's problem solving could
alter or bias the expert's
subsequent problem solving. In
addition, the expert's use of a
shortcut in problem solving, such
as using the present as a baseline
from which to estimate future
patterns, could bias his or her
answer (Hogarth, 1980).

We recommend a two-step approach
for handling the conditioning
effect and its offshoot, bilas: (1)
control those factors that can be
controlled, and (2) gather as much
data as possible on those factors
that cannot be controlled so that
the expert data may be either
analyzed later for their effect or
to annotate the results according
to the conditions. For example,
factors that relate to the question
or the elicitation situation (e.q.,
the wording of the question, |its
timing, the elicitation method,
response mode, and dispersion
measures) are under the discretion
of the project personnel and can be
desigred with the conditioning
effect in mind. In contrast, the



project personnel cannot control
for other factors, such as the
expert's internal state,

personality attributes, and
professional background. However,
data can be gathered on these

factors by asking a
demographic questions before or
after the expert solves the
problem. In these two ways, the
effects of conditioning can be
examined, if not reduced.

In general, we have found
structuring to be an effective
means of controlling factors and
gathering data on those which are
not easily controlled. Structuring
means 1mposing controls on the
elicitation process. It can
include presenting the expert with
a clear and assimilable statement,
using a predesigned set of
questions to guide the elicitation,
allowing only particular kinds of
communication between the experts,
and requiring that the experts
answer using one of the response
modes. Structuring can be done to
varying degrees to different
aspects of the elicitation process.
In general, structuring the
elicitation limits the intrusion of
extraneous factors, such as bias.
It seems to keep the field of
observation clearer and thus eases
the task of gathering and analyzing
the expert data.

A structured elicitation process
can be more easily monitored for
the intrusion of various factors.
For example, a gquestion is
frequently structured by
decomposing it into is component
parts. Question decomposition eases
the cognitive burden of solving
complex problems and has been found
to lead to more accurate answers

series of

(Armstrong, Penniston & Gorrdon,
1975; Haves-Roth, 1980), When a
question is decomposed, the expert

provides estimates on each part and
the data gatherer can control or
record conditioning factors for
each part. In general, we have
found monitoring for bias easlier
when experts verbalize thelir
thoughts and answers.

GENERAL RECOMMENDATIONS

In addition to the specific
recommendations given in the above
six common problems, we recommend a
general approach to elicitation and
analysis as a means of avoiding or
reducing problems in expert
opinion.

We advocate that the elicitation
be designed to fit the experts and
the way that humans think rather
than force the experts tco adapt to
convenient or standard methods. We
propose the research on human
limitations and tendencies toward

bplas be taken into account in
selecting the methods. For
example, if the interviewer

selecting the elicitation methods
does not consider people's
limitations in comparing more than
7 things at once, the resulting
data will be less credible. If in
the former case the expert
estimates are being used to develop
a model or decicion process, there
is the danger of garbage 1in,
garbage out.

We also advocate the practice of
eliciting as much of the
information on the expert's
problem-solving processes as
possible, We believe that this
data is necessary to the
understanding of the expert's
answers, Expert's estimates have
been found to correlate to the way
trhat they solve the problem (Booker
& Meyer, 1988; Meyer & Booker,
1987). The expert's definitions
and assumptions frequently explain
how the expert arrived at one
particular answer and not arothetr.
In addition, problem-solving data
will prove valuable later |{if
multiple expert's estimates are to
be inathematically combined to form
2 single estimate. The expert data
can also guide the aggregation so
that experts who construed the
problem very differently will not

have their answers combined
inaprropriately. In general,
recording information on the

expert's problem-solving process
allows the opinions to be more

3]



easily updated as new information
becomes available.

We also suggest controlling for
the factors that can enter into the
elicitation process and influence
the expert's problem-solving
process. For example, the phrasing
of the problem, th2 interviewer's
responses, and other participant's
responses can affect the answer an
expert reaches. For those
influences that can not be easily
controlled, such as the expert's
tendency to anchor to his or her
first impression, we recommend
gathering as much data as possible
to analyze their effects.

We recommend using the
decomposition principle to obtain
the best estimates from the expert,
to minimize biases, and to help
monitor granularity and conditions
affecting the answers.

The approach to analysis that we
recommend complements the
elicitation philosophy mentioned
above. Just as the elicitation
approach allows the experts'
capabilities to shape the data-
gathering methods, the analysis
philosophy should allow the data to
dictate which analytic methods are
appropriate. Thus, the analyses
are data driven, This analysis
approach is used ir the belief that
it will produce the highest quality
results.

As a part of
philosophy, the analyst avoids
(where possible) blindly assumiag
particular properties of expert

the analysis

opinion (e.g., that the expert
opinion data is normally
distributed, that the answers of

multiple experts are independent,
or that the experts ara perfectly
calibrated). Instead, we suggest
that the analyst use methods that
either do not 1require these
assumptions or thau can test for
the existence of such properties.
For example, nonparametric
statistical procedures and data
based simulation techniques do not
depend on an assumed distribution
of the data.

We also recommend using a
variety of methods to address the

multivariate structure of expert
opinion data. The data 1is
multivariate because it includes
answers to multiple prchlems,
information on conditioning
factors, information on the
experts' problem-solving processes,
and information about the experts'
backgrounds. Therefore, the data
is a mixture of qualitative and
quantitative information,
Multivariate analysis techniques

allow the simultaneous
consideration of two or more
variables of interest. Many of

these techniques accommodate the
mixture of qualitative and
quantitative data types. Thus,
they can be used to investigate
some of the more important
properties of the data, such as the
dependence of experts and
identifying important conditioning
factors. Caution ie¢ required in
the use of standard statistical
multivariate techniques because
these have strict assumptions about
the data. Again, simulation and
some data-based techniques such as
the bocotstrap may be more
appropriate for expert opinion data
analysis.
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